X-ray crystallography

The most widely used structural method for the determination of high-resolution structures of biological samples is X-ray crystallography.

Protein Crystallization. Our Institute is equipped with a Tecan robot for high throughput automated screening of crystal growth in 96-well format and volumes as small as 200 nL. For a new target protein, we routinely screen up to a thousand different crystallization conditions, varying several parameters such as pH, ionic strength and precipitating agents. The initial crystals are then optimized either with automated or manual set ups to obtain single crystals for the X‑ray diffraction experiments.

Documentation. A digital documentation system is in operation for the evaluation and recording of results.

We have an in-house rotating anode generator for single crystal X-ray diffraction experiments. The computer infrastructure in ICS-6 is equipped with a variety of crystallographic software required for the data analysis. Additionally, we have regular access to the beamlines at Deutsches Elektronen Synchrotron (DESY) of the Helmholtz Association in Hamburg and to the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

These facilities are available to researchers within the framework of collaborative projects.

For further information see:

Arbeitsgruppe Batra-Safferling / Granzin
Arbeitsgruppe Weiergräber

Structure Gallery


Kovacic F, Granzin J, Wilhelm S, Kojic-Prodic B, Batra-Safferling R, Jaeger KE

Structural and Functional Characterisation of TesA - A Novel Lysophospholipase A from Pseudomonas aeruginosa.
PLoS One 8, e69125 (2013)

4JGG


Granzin J, Cousin A, Weirauch M, Schlesinger R, Büldt G, Batra-Safferling 

Crystal structure of p44, a constitutively active splice variant of visual arrestin.
J Mol Biol. 416, 611-8 (2012)

3UGU

3UGX


Circolone, F, Granzin, J, Jentzsch, K, Drepper, T, Jaeger, KE, Willbold, D, Krauss, U, Batra-Safferling, R

Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida.
J.Mol.Biol. 417, 362-374 (2012)

3SW1


  • Arinkin V, Granzin J, Röllen K, Krauss U, Jaeger KE, Willbold D, Batra-Safferling R. 
    Structure of a LOV protein in apo-state and implications for construction of LOV-based optical tools 
    Scientific Reports 7(42971), (2017) 
    http://dx.doi.org/10.1038/srep42971  
  • Batra-Safferling R and Granzin J.  
    The Structure of the Polar Core Mutant R175E and Its Functional Implications.  
    The Structural Basis Of Arrestin Functions, Vsevolod V. Gurevich (Editor); Springer International Publishing Chapter 11, 143-158 (2017) 
    ISBN: 978-3-319-57552-0 
  • Nikolaev M, Round E, Gushchin I, Polovinkin V, Balandin T, Kuzmichev P, Shevchenko V, Borshchevskiy V, Kuklin A, Round A, Bernhard F, Willbold D, Büldt G, Gordeliy V.  
    Integral membrane proteins can be crystallized directly from nanodiscs. 
    Cryst. Growth Des. 17, 945-948 (2017) 
  • Weiergräber OH, Schwarten M, Strodel B, Willbold D.  
    Investigating Structure and Dynamics of Atg8 Family Proteins. 
    Methods Enzymol. 587, 115-142 (2017) 
  • Röllen K, Granzin J, Panwalkar V, Arinkin V, Rani R, Hartmann R, Krauss U, Jaeger KE, Willbold D, Batra-Safferling R. 
    Signaling States of a Short Blue-Light Photoreceptor Protein PpSB1-LOV Revealed from Crystal Structures and Solution NMR Spectroscopy. 
    J Mol Biol. 428, 3721 - 3736 (2016) 
    http://dx.doi.org/10.1016/j.jmb.2016.05.027  
    http://www.ncbi.nlm.nih.gov/pubmed/27291287  
  • Endres S, Granzin J, Circolone F, Stadler A, Krauss U, Drepper T, Svensson V, Knieps-Grünhagen E, Wirtz A, Cousin A, Tielen P, Willbold D, Jaeger K-E, Batra-Safferling R 
    Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. 
    BMC Microbiology 15, 30 (2015) 
    http://www.biomedcentral.com/1471-2180/15/30  
  • Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R 
    Structural evidence for the role of polar core residue Arg175 in arrestin activation. 
    Scientific Reports 5, 15808 (2015) 
    http://dx.doi.org/10.1038/srep15808.  
    http://www.nature.com/articles/srep15808  
  • Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, Borshchevskiy V, Balandin T, Popov A, Gensch T, Fahlke C, Bamann C, Willbold D, Büldt G, Bamberg E, Gordeliy V 
    Crystal structure of a light-driven sodium pump. 
    Nat. Struct. Mol. Biol. 22, 390-395 (2015) 
  • Ma P, Schillinger O, Schwarten M, Lecher J, Hartmann R, Stoldt M, Mohrlüder J, Olubiyi O, Strodel B, Willbold D, Weiergräber OH 
    Conformational polymorphism in the autophagy-related protein GATE-16 
    Biochemistry 54, 5469-5479 (2015) 
  • Ma P, Xue Y, Coquelle N, Haller JD, Yuwen T, Ayala I, Mikhailovskii O, Willbold D, Colletier J-P, Skrynnikov NR, Schanda P 
    Observing the overall rocking motion of a protein in a crystal. 
    Nat. Commun. 6, 8361 (2015) 
  • Michel M, Schwarten M, Decker C, Nagel-Steger L, Willbold D, Weiergräber OH 
    The mammalian autophagy initiator complex contains 2 HORMA domain proteins 
    Autophagy 11, 2300-2308 (2015) 
    http://dx.doi.org/10.1080/15548627.2015.1076605  
  • Polovinkin V, Gushchin I, Sintsov M, Round E, Balandin T, Chervakov P, Schevchenko V, Utrobin P, Popov A, Borshchevskiy V, Mishin A, Kuklin A, Willbold D, Chupin V, Popot JL, Gordeliy V 
    High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase 
    J. Membr. Biol. 247, 997-1004 (2014) 
  • Kalisman N, GF Schröder, M Levitt 
    The Crystal Structures of the Eukaryotic Chaperonin CCT Reveal its Functional Partitioning 
    Structure 21, 540 (2013) 
  • Brunger AT, D Das, AM Deacon, J Grant, TC Terwilliger, RJ Read, PD Adams, M Levitt and GF Schröder 
    Application of DEN-Refinement And Automated Model-Building To A Difficult Case Of Molecular Replacement Phasing: The Structure Of A Putative Succinyl-Diaminopimelate Desuccinylase From Corynebacterium Glutamicum. 
    Acta Cryst. D 68, 391 (2012) 
  • Brunger AT, PD Adams, P Fromme, R Fromme, M Levitt, and GF Schröder 
    Improving the accuracy of macromolecular structure refinement at 7 Å resolution. 
    Structure 20(6), 957 (2012) 
  • O'Donovan DJ, I Stokes-Rees, Y Nam, S Blacklow, GF Schröder, AT Brunger, Piotr Sliz 
    A grid-enabled web service for low-resolution crystal structure refinement. 
    Acta Cryst. D 68, 268 (2012) 
  • Gao S, von der Malsburg A, Dick A, Faelber K, Schröder GF, Haller O, Kochs G, Daumke O 
    Three domain architecture of dynamin-like MxA GTPase. 
    Immunity 35, 514 (2011) 
  • Jaenicke E, Büchler K, Decker H, Markl J, Barends T, and Schröder GF 
    The Refined Structure of Functional Unit h of Keyhole Limpet Hemocyanin (KLH1-h) Reveals Disulfide Bridges. 
    IUBMB Life 63(3), 183 (2011) 
  • Thielmann Y, Weiergräber OH, Mohrlüder J, Willbold D 
    Structural framework of the GABARAP-calreticulin interface - implications for substrate binding to endoplasmic reticulum chaperones 
    FEBS J 276, 1140-1152 (2009) 
  • Weiergräber OH, Stangler T, Thielmann Y, Mohrlüder J, Wiesehan K, Willbold D 
    Ligand binding mode of GABAA receptor-associated protein 
    J Mol Biol 381, 1320-1331 (2008) 

Physikalische Biologie
Heinrich-Heine-Universität
Gebäude 26.12, Ebene U1
Universitätsstraße 1
40225 Düsseldorf
Deutschland

Institutsleitung
Prof. Dr. D. Willbold
Gebäude 26.12
Ebene U1, Raum 84
Telefon: +49-(0)211 / 81-11390
Mail senden

Verantwortlich für den Inhalt: E-Mail sendenRedaktionsteam IPB