Zum Inhalt springenZur Suche springen

Publikationen in 2018

  • Bhatia S, Diedrich D, Frieg B, Ahlert H, Stein S, Bopp B, Lang F, Zang T, Kröger T, Ernst T, Kögler G, Krieg A, Lüdeke S, Kunkel H, Rodrigues Moita AJ, Kassack MU, Marquardt V, Opitz FV, Oldenburg M, Remke M, Babor F, Grez M, Hochhaus A, Borkhardt A, Groth G, Nagel-Steger L, Jose J, Kurz T, Gohlke H, Hansen FK, Hauer J 
    Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. 
    Blood 132(3), 307-320 (2018) 
    https://doi.org/10.1182/blood-2017-10-810986  
    https://ashpublications.org/blood/article-lookup/doi/10.1182/blood-2017-10-810986  
  • Caruso IP, Panwalkar V, Coronado MA, Dingley AJ, Cornélio ML, Willbold D, Arni RK, Eberle RJ 
    Structure and interaction of Corynebacterium pseudotuberculosis cold shock protein A with Y-box single-stranded DNA fragment 
    FEBS J 285, 372-390 (2018) 
    https://doi.org/10.1111/febs.14350  
  • Cavini IA, Munte CE, Erlach MB, van Groen T, Kadish I, Zhang T, Ziehm T, Nagel-Steger L, Kutzsche J, Kremer W, Willbold D, Kalbitzer HR. 
    Inhibition of amyloid Aβ aggregation by high pressures or specific d-enantiomeric peptides. 
    Chem Commun (Camb). 54(26), 3294-3297 (2018) 
    https://10.1039/c8cc01458b.  
    https://www.ncbi.nlm.nih.gov/pubmed/29537428  
  • Coronado MA, Eberle RJ, Bleffert N, Feuerstein S, Olivier DS, de Moraes FR, Willbold D, Arni RK 
    Zika virus NS2B/NS3 proteinase: A new target for an old drug - Suramin a lead compound for NS2B/NS3 proteinase inhibition. 
    Antiviral Res. 160, 118-125 (2018) 
  • Duggimpudi S, Kloetgen A, Maney SK, Münch PC, Hezaveh K, Shaykhalishahi H, Hoyer W, McHardy AC, Lang PA, Borkhardt A, Hoell JI 
    Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2's RNA-binding activity on IL-6 signaling 
    J. Biol. Chem. 293, 15359-15369 (2018) 
    https://doi.org/10.1074/jbc.RA118.002243  
  • Dunkelmann T, Teichmann K, Ziehm T, Schemmert S, Frenzel D, Tusche M, Dammers C, Jürgens D, Langen KJ, Demuth HU, Shah NJ, Kutzsche J, Willuweit A, Willbold D 
    Aβ oligomer eliminating compounds interfere successfully with pEAβ (3–42) induced motor neurodegenerative phenotype in transgenic mice 
    Neuropeptides 67, 27-35 (2018) 
    https://doi.org/10.1016/j.npep.2017.11.011  
    https://www.sciencedirect.com/science/article/pii/S0143417917301531  
  • Dunkelmann T, Schemmert S, Honold D, Teichmann K, Butzküven E, Demuth HU, Shah NJ, Langen KJ, Kutzsche J, Willbold D, Willuweit A. 
    Comprehensive Characterization of the Pyroglutamate Amyloid-β Induced Motor Neurodegenerative Phenotype of TBA2.1 Mice. 
    J Alzheimers Dis. 63(1), 115-130 (2018) 
    https://10.3233/JAD-170775  
    https://www.ncbi.nlm.nih.gov/pubmed/29578479  
  • Fettweiss T, Röllen K, Granzin J, Reiners O, Endres S, Drepper T, Willbold D, Jaeger KE, Batra-Safferling R*, Krauss U* 
    Mechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from Dinoroseobacter shibae. 
    Biochemistry 57, 4833–4847 (2018) 
    http://dx.doi.org/10.1021/acs.biochem.8b00645  
  • Galle L, Cutsail III G, Nischwitz V, DeBeer S, Span I 
    Spectroscopic characterization of the Co-substituted C-terminal domain of Rubredoxin-2 
    Biological Chemistry 399, 787-798 (2018) 
    https://doi.org/10.1515/hsz-2018-0142  
    https://www.degruyter.com/view/journals/bchm/399/7/article-p787.xml  
  • Hasecke F, Miti T, Perez C, Barton J, Schölzel D, Gremer L, Grüning CSR, Matthews G, Meisl G, Knowles TPJ, Willbold D, Neudecker P, Heise H, Ullah G, Hoyer W, Muschol M 
    Origin of metastable oligomers and their effects on amyloid fibril self-assembly 
    Chem. Sci. 9, 5937-5948 (2018) 
    https://doi.org/10.1039/c8sc01479e  
  • Kulawik A,Heise H,Zafiu C,Willbold D,Bannach O. 
    Advancements of the sFIDA method for oligomer-based diagnostics of neurodegenerative diseases 
    FEBS Letters , (2018) 
    http://onlinelibrary.wiley.com/doi/10.1002/1873-3468.12983/abstract  
    CLICK  
  • Orr AA, Shaykhalishahi H, Mirecka EA, Jonnalagadda SVR, Hoyer W, Tamamis P 
    Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins 
    Comput. Chem. Eng. 116, 322-332 (2018) 
    https://doi.org/10.1016/j.compchemeng.2018.02.013  
  • Pascual-Ortiz M, Saiardi A, Walla E, Jakopec V, Künzel NA, Span I, Vangala A, Fleig U 
    Asp1 Bifunctional Activity Modulates Spindle Function via Controlling Cellular Inositol Pyrophosphate Levels in Schizosaccharomyces pombe 
    Mol. Cell. Biol. 38, e00047-18 (2018) 
    http://dx.doi.org/10.1128/MCB.00047-18  
    http://mcb.asm.org/content/38/9/e00047-18.abstract  
  • Röllen, K.; Granzin, J.; Batra-Safferling, R*.; Stadler, A.M*. 
    Small-angle X-ray scattering study of the kinetics of light-dark transition in a LOV protein 
    PLoS One 13(7):e0200746, (2018) 
    http://dx.doi.org/10.1371/journal.pone.0200746  
  • Rösener NS, Gremer L, Reinartz E, König A, Brener O, Heise H, Hoyer W, Neudecker P, Willbold D 
    A d-enantiomeric peptide interferes with heteroassociation of amyloid-β oligomers and prion protein 
    J. Biol. Chem. 293, 15748-15764 (2018) 
    https://doi.org/10.1074/jbc.RA118.003116  
  • Santur K, Sevenich M, Schwarten M, Nischwitz V, Willbold D, Mohrlüder J 
    In Vitro Reconstitution of the Highly Active and Natively Folded Recombinant Human Superoxide Dismutase 1 Holoenzyme 
    ChemistrySelect 3, 7627-7632 (2018) 
    https://doi.org/10.1002/slct.201801319  
    https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201801319  
  • Schartmann E, Schemmert S, Niemietz N, Honold D, Ziehm T, Tusche M, Elfgen A, Gering I, Brener O, Shah NJ, Langen KJ, Kutzsche J, Willbold D, Willuweit A. 
    In Vitro Potency and Preclinical Pharmacokinetic Comparison of All-D-Enantiomeric Peptides Developed for the Treatment of Alzheimer's Disease. 
    J Alzheimers Dis 64(3), 859-873 (2018) 
    https://10.3233/JAD-180165  
    https://www.ncbi.nlm.nih.gov/pubmed/29966196  
  • Schulte M, Panwalkar V, Freischem S, Willbold D, Dingley, AJ 
    Proline restricts loop 1 conformation of the high affinity WW domain from human Nedd4-1 to a ligand binding-competent type 1 beta-turn 
    J Phys Chem B 122, 4219-4230 (2018) 
    https://doi.org/10.1021/acs.jpcb.7b11637  
  • Schulte M, Petrović D, Neudecker P, Hartmann R, Pietruszka J, Willbold S, Willbold D, Panwalkar V 
    Conformational sampling of the intrinsically disordered C-terminal tail of DERA is important for enzyme catalysis 
    ACS Catal 8, 3971-3984 (2018) 
    https://doi.org/10.1021/acscatal.7b04408  
  • Steger, G, Riesner, D 
    Viroid research and its significance for RNA technology and basic biochemistry. 
    Nucleic Acids Res. 46, 10563-10576 (2018) 
    http://dx.doi.org/10.1093/nar/gky903  
  • Uluca B, Viennet T, Petrovic D, Shaykhalishahi H, Weirich F, Gönülalan A, Strodel B, Etzkorn M, Hoyer W, Heise H 
    DNP-Enhanced MAS NMR: A Tool to Snapshot Conformational Ensembles of α-Synuclein in Different States 
    Biophys. J. 114, 1614-1623 (2018) 
    https://doi.org/10.1016/j.bpj.2018.02.011  
  • Viennet T, Wördehoff MW, Uluca B, Poojari C, Shaykhalishahi H, Willbold D, Strodel B, Heise H, Buell AK, Hoyer W, Etzkorn M: 
    Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane-binding modes to amyloid fibril formation 
    Commun. Biol. 1, 44 (2018) 
    https://doi.org/10.1038/s42003-018-0049-z  
  • Wördehoff M, Hoyer W 
    α-Synuclein aggregation monitored by Thioflavin T fluorescence assay 
    Bio Protoc. 8, e2941 (2018) 
    https://doi.org/10.21769/BioProtoc.2941  
  • Yerabham ASK, Müller-Schiffmann A, Ziehm T, Stadler A, Köber S, Indurkhya X, Marreiros R, Trossbach SV, Bradshaw NJ, Prikulis I, Willbold D, Weiergräber OH, Korth C 
    Biophysical insights from a single chain camelid antibody directed against the disrupted in schizophrenia 1 protein 
    PLoS One 13, e0191162 (2018) 
  • Zhang T, Pauly T, Nagel-Steger L 
    Stoichiometric Zn2+ interferes with the self-association of Aβ42: Insights from size distribution analysis. 
    Int J Biol Macromol 113, 631-639 (2018) 
    https://doi.org/10.1016/j.ijbiomac.2018.02.123  
    https://www.sciencedirect.com/science/article/pii/S0141813017348365?via%3Dihub  
Verantwortlichkeit: